Topology, structures, and energy landscapes of human chromosomes.
نویسندگان
چکیده
Chromosome conformation capture experiments provide a rich set of data concerning the spatial organization of the genome. We use these data along with a maximum entropy approach to derive a least-biased effective energy landscape for the chromosome. Simulations of the ensemble of chromosome conformations based on the resulting information theoretic landscape not only accurately reproduce experimental contact probabilities, but also provide a picture of chromosome dynamics and topology. The topology of the simulated chromosomes is probed by computing the distribution of their knot invariants. The simulated chromosome structures are largely free of knots. Topologically associating domains are shown to be crucial for establishing these knotless structures. The simulated chromosome conformations exhibit a tendency to form fibril-like structures like those observed via light microscopy. The topologically associating domains of the interphase chromosome exhibit multistability with varying liquid crystalline ordering that may allow discrete unfolding events and the landscape is locally funneled toward "ideal" chromosome structures that represent hierarchical fibrils of fibrils.
منابع مشابه
On the Six Node Hexagon Elements for Continuum Topology Optimization of Plates Carrying in Plane Loading and Shell Structures Carrying out of Plane Loading
The need of polygonal elements to represent the domain is gaining interest among structural engineers. The objective is to perform static analysis and topology optimization of a given continuum domain using the rational fraction type shape functions of six node hexagonal elements. In this paper, the main focus is to perform the topology optimization of two-dimensional plate structures using Evo...
متن کاملTOPOLOGY OPTIMIZATION OF SPACE STRUCTURES USING ANT COLONY METHOD
In this article, the ant colony method is utilized for topology optimization of space structures. Strain energy of the structure is minimized while the material volume is limited to a certain amount. In other words, the stiffest possible structure is sought when certain given materials are used. In addition, a noise cleaning technique is addressed to prevent undesirable members in optimum topol...
متن کاملTOPOLOGY OPTIMIZATION OF STRUCTURES UNDER TRANSIENT LOADS
In this article, an efficient methodology is presented to optimize the topology of structural systems under transient loads. Equivalent static loads concept is used to deal with transient loads and to solve an alternate quasi-static optimization problem. The maximum strain energy of the structure under the transient load during the loading interval is used as objective function. The objective f...
متن کاملHow to quantify energy landscapes of solids.
We explore whether the topology of energy landscapes in chemical systems obeys any rules and what these rules are. To answer this and related questions we use several tools: (i) Reduced energy surface and its density of states, (ii) descriptor of structure called fingerprint function, which can be represented as a one-dimensional function or a vector in abstract multidimensional space, (iii) de...
متن کاملIdentification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation
There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 19 شماره
صفحات -
تاریخ انتشار 2015